3.331 \(\int \frac {x^{3/2}}{(1+x^2)^3} \, dx\)

Optimal. Leaf size=129 \[ \frac {\sqrt {x}}{16 \left (x^2+1\right )}-\frac {\sqrt {x}}{4 \left (x^2+1\right )^2}-\frac {3 \log \left (x-\sqrt {2} \sqrt {x}+1\right )}{64 \sqrt {2}}+\frac {3 \log \left (x+\sqrt {2} \sqrt {x}+1\right )}{64 \sqrt {2}}-\frac {3 \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}+\frac {3 \tan ^{-1}\left (\sqrt {2} \sqrt {x}+1\right )}{32 \sqrt {2}} \]

[Out]

3/64*arctan(-1+2^(1/2)*x^(1/2))*2^(1/2)+3/64*arctan(1+2^(1/2)*x^(1/2))*2^(1/2)-3/128*ln(1+x-2^(1/2)*x^(1/2))*2
^(1/2)+3/128*ln(1+x+2^(1/2)*x^(1/2))*2^(1/2)-1/4*x^(1/2)/(x^2+1)^2+1/16*x^(1/2)/(x^2+1)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 129, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.692, Rules used = {288, 290, 329, 211, 1165, 628, 1162, 617, 204} \[ \frac {\sqrt {x}}{16 \left (x^2+1\right )}-\frac {\sqrt {x}}{4 \left (x^2+1\right )^2}-\frac {3 \log \left (x-\sqrt {2} \sqrt {x}+1\right )}{64 \sqrt {2}}+\frac {3 \log \left (x+\sqrt {2} \sqrt {x}+1\right )}{64 \sqrt {2}}-\frac {3 \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}+\frac {3 \tan ^{-1}\left (\sqrt {2} \sqrt {x}+1\right )}{32 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/(1 + x^2)^3,x]

[Out]

-Sqrt[x]/(4*(1 + x^2)^2) + Sqrt[x]/(16*(1 + x^2)) - (3*ArcTan[1 - Sqrt[2]*Sqrt[x]])/(32*Sqrt[2]) + (3*ArcTan[1
 + Sqrt[2]*Sqrt[x]])/(32*Sqrt[2]) - (3*Log[1 - Sqrt[2]*Sqrt[x] + x])/(64*Sqrt[2]) + (3*Log[1 + Sqrt[2]*Sqrt[x]
 + x])/(64*Sqrt[2])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {x^{3/2}}{\left (1+x^2\right )^3} \, dx &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {1}{8} \int \frac {1}{\sqrt {x} \left (1+x^2\right )^2} \, dx\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}+\frac {3}{32} \int \frac {1}{\sqrt {x} \left (1+x^2\right )} \, dx\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}+\frac {3}{16} \operatorname {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}+\frac {3}{32} \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {x}\right )+\frac {3}{32} \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {x}\right )\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}+\frac {3}{64} \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {x}\right )+\frac {3}{64} \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {x}\right )-\frac {3 \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {x}\right )}{64 \sqrt {2}}-\frac {3 \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {x}\right )}{64 \sqrt {2}}\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}-\frac {3 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}}+\frac {3 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}}+\frac {3 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}\\ &=-\frac {\sqrt {x}}{4 \left (1+x^2\right )^2}+\frac {\sqrt {x}}{16 \left (1+x^2\right )}-\frac {3 \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}+\frac {3 \tan ^{-1}\left (1+\sqrt {2} \sqrt {x}\right )}{32 \sqrt {2}}-\frac {3 \log \left (1-\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}}+\frac {3 \log \left (1+\sqrt {2} \sqrt {x}+x\right )}{64 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 121, normalized size = 0.94 \[ \frac {1}{128} \left (\frac {8 \sqrt {x}}{x^2+1}-\frac {32 \sqrt {x}}{\left (x^2+1\right )^2}-3 \sqrt {2} \log \left (x-\sqrt {2} \sqrt {x}+1\right )+3 \sqrt {2} \log \left (x+\sqrt {2} \sqrt {x}+1\right )-6 \sqrt {2} \tan ^{-1}\left (1-\sqrt {2} \sqrt {x}\right )+6 \sqrt {2} \tan ^{-1}\left (\sqrt {2} \sqrt {x}+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/(1 + x^2)^3,x]

[Out]

((-32*Sqrt[x])/(1 + x^2)^2 + (8*Sqrt[x])/(1 + x^2) - 6*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[x]] + 6*Sqrt[2]*ArcTan[
1 + Sqrt[2]*Sqrt[x]] - 3*Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[x] + x] + 3*Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[x] + x])/128

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 171, normalized size = 1.33 \[ -\frac {12 \, \sqrt {2} {\left (x^{4} + 2 \, x^{2} + 1\right )} \arctan \left (\sqrt {2} \sqrt {\sqrt {2} \sqrt {x} + x + 1} - \sqrt {2} \sqrt {x} - 1\right ) + 12 \, \sqrt {2} {\left (x^{4} + 2 \, x^{2} + 1\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} \sqrt {-4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4} - \sqrt {2} \sqrt {x} + 1\right ) - 3 \, \sqrt {2} {\left (x^{4} + 2 \, x^{2} + 1\right )} \log \left (4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4\right ) + 3 \, \sqrt {2} {\left (x^{4} + 2 \, x^{2} + 1\right )} \log \left (-4 \, \sqrt {2} \sqrt {x} + 4 \, x + 4\right ) - 8 \, {\left (x^{2} - 3\right )} \sqrt {x}}{128 \, {\left (x^{4} + 2 \, x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(x^2+1)^3,x, algorithm="fricas")

[Out]

-1/128*(12*sqrt(2)*(x^4 + 2*x^2 + 1)*arctan(sqrt(2)*sqrt(sqrt(2)*sqrt(x) + x + 1) - sqrt(2)*sqrt(x) - 1) + 12*
sqrt(2)*(x^4 + 2*x^2 + 1)*arctan(1/2*sqrt(2)*sqrt(-4*sqrt(2)*sqrt(x) + 4*x + 4) - sqrt(2)*sqrt(x) + 1) - 3*sqr
t(2)*(x^4 + 2*x^2 + 1)*log(4*sqrt(2)*sqrt(x) + 4*x + 4) + 3*sqrt(2)*(x^4 + 2*x^2 + 1)*log(-4*sqrt(2)*sqrt(x) +
 4*x + 4) - 8*(x^2 - 3)*sqrt(x))/(x^4 + 2*x^2 + 1)

________________________________________________________________________________________

giac [A]  time = 0.64, size = 92, normalized size = 0.71 \[ \frac {3}{64} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {3}{64} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {3}{128} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {3}{128} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {x^{\frac {5}{2}} - 3 \, \sqrt {x}}{16 \, {\left (x^{2} + 1\right )}^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(x^2+1)^3,x, algorithm="giac")

[Out]

3/64*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 3/64*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x)
)) + 3/128*sqrt(2)*log(sqrt(2)*sqrt(x) + x + 1) - 3/128*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) + 1/16*(x^(5/2)
- 3*sqrt(x))/(x^2 + 1)^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 82, normalized size = 0.64 \[ \frac {3 \sqrt {2}\, \arctan \left (\sqrt {2}\, \sqrt {x}-1\right )}{64}+\frac {3 \sqrt {2}\, \arctan \left (\sqrt {2}\, \sqrt {x}+1\right )}{64}+\frac {3 \sqrt {2}\, \ln \left (\frac {x +\sqrt {2}\, \sqrt {x}+1}{x -\sqrt {2}\, \sqrt {x}+1}\right )}{128}+\frac {\frac {x^{\frac {5}{2}}}{16}-\frac {3 \sqrt {x}}{16}}{\left (x^{2}+1\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(x^2+1)^3,x)

[Out]

2*(1/32*x^(5/2)-3/32*x^(1/2))/(x^2+1)^2+3/128*2^(1/2)*ln((x+2^(1/2)*x^(1/2)+1)/(x-2^(1/2)*x^(1/2)+1))+3/64*2^(
1/2)*arctan(2^(1/2)*x^(1/2)+1)+3/64*2^(1/2)*arctan(2^(1/2)*x^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 2.97, size = 97, normalized size = 0.75 \[ \frac {3}{64} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {x}\right )}\right ) + \frac {3}{64} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {x}\right )}\right ) + \frac {3}{128} \, \sqrt {2} \log \left (\sqrt {2} \sqrt {x} + x + 1\right ) - \frac {3}{128} \, \sqrt {2} \log \left (-\sqrt {2} \sqrt {x} + x + 1\right ) + \frac {x^{\frac {5}{2}} - 3 \, \sqrt {x}}{16 \, {\left (x^{4} + 2 \, x^{2} + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(x^2+1)^3,x, algorithm="maxima")

[Out]

3/64*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(x))) + 3/64*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(x)
)) + 3/128*sqrt(2)*log(sqrt(2)*sqrt(x) + x + 1) - 3/128*sqrt(2)*log(-sqrt(2)*sqrt(x) + x + 1) + 1/16*(x^(5/2)
- 3*sqrt(x))/(x^4 + 2*x^2 + 1)

________________________________________________________________________________________

mupad [B]  time = 4.69, size = 62, normalized size = 0.48 \[ -\frac {\frac {3\,\sqrt {x}}{16}-\frac {x^{5/2}}{16}}{x^4+2\,x^2+1}+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}-\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {3}{64}+\frac {3}{64}{}\mathrm {i}\right )+\sqrt {2}\,\mathrm {atan}\left (\sqrt {2}\,\sqrt {x}\,\left (\frac {1}{2}+\frac {1}{2}{}\mathrm {i}\right )\right )\,\left (\frac {3}{64}-\frac {3}{64}{}\mathrm {i}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(x^2 + 1)^3,x)

[Out]

2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 - 1i/2))*(3/64 + 3i/64) + 2^(1/2)*atan(2^(1/2)*x^(1/2)*(1/2 + 1i/2))*(3/64 -
 3i/64) - ((3*x^(1/2))/16 - x^(5/2)/16)/(2*x^2 + x^4 + 1)

________________________________________________________________________________________

sympy [B]  time = 9.81, size = 481, normalized size = 3.73 \[ \frac {8 x^{\frac {5}{2}}}{128 x^{4} + 256 x^{2} + 128} - \frac {24 \sqrt {x}}{128 x^{4} + 256 x^{2} + 128} - \frac {3 \sqrt {2} x^{4} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {3 \sqrt {2} x^{4} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {6 \sqrt {2} x^{4} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {6 \sqrt {2} x^{4} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} - \frac {6 \sqrt {2} x^{2} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {6 \sqrt {2} x^{2} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {12 \sqrt {2} x^{2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {12 \sqrt {2} x^{2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} - \frac {3 \sqrt {2} \log {\left (- 4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {3 \sqrt {2} \log {\left (4 \sqrt {2} \sqrt {x} + 4 x + 4 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {6 \sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} - 1 \right )}}{128 x^{4} + 256 x^{2} + 128} + \frac {6 \sqrt {2} \operatorname {atan}{\left (\sqrt {2} \sqrt {x} + 1 \right )}}{128 x^{4} + 256 x^{2} + 128} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(x**2+1)**3,x)

[Out]

8*x**(5/2)/(128*x**4 + 256*x**2 + 128) - 24*sqrt(x)/(128*x**4 + 256*x**2 + 128) - 3*sqrt(2)*x**4*log(-4*sqrt(2
)*sqrt(x) + 4*x + 4)/(128*x**4 + 256*x**2 + 128) + 3*sqrt(2)*x**4*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 +
 256*x**2 + 128) + 6*sqrt(2)*x**4*atan(sqrt(2)*sqrt(x) - 1)/(128*x**4 + 256*x**2 + 128) + 6*sqrt(2)*x**4*atan(
sqrt(2)*sqrt(x) + 1)/(128*x**4 + 256*x**2 + 128) - 6*sqrt(2)*x**2*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4
+ 256*x**2 + 128) + 6*sqrt(2)*x**2*log(4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 + 256*x**2 + 128) + 12*sqrt(2)*x
**2*atan(sqrt(2)*sqrt(x) - 1)/(128*x**4 + 256*x**2 + 128) + 12*sqrt(2)*x**2*atan(sqrt(2)*sqrt(x) + 1)/(128*x**
4 + 256*x**2 + 128) - 3*sqrt(2)*log(-4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 + 256*x**2 + 128) + 3*sqrt(2)*log(
4*sqrt(2)*sqrt(x) + 4*x + 4)/(128*x**4 + 256*x**2 + 128) + 6*sqrt(2)*atan(sqrt(2)*sqrt(x) - 1)/(128*x**4 + 256
*x**2 + 128) + 6*sqrt(2)*atan(sqrt(2)*sqrt(x) + 1)/(128*x**4 + 256*x**2 + 128)

________________________________________________________________________________________